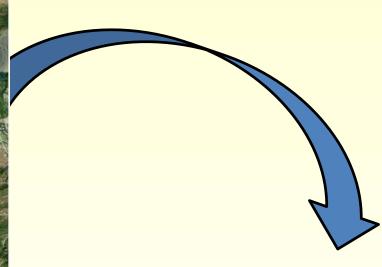
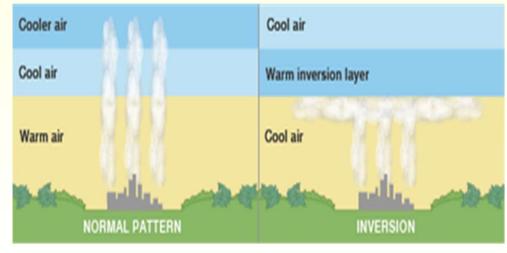


Оценка уровня и выявление источников загрязнения воздуха в городе Алматы

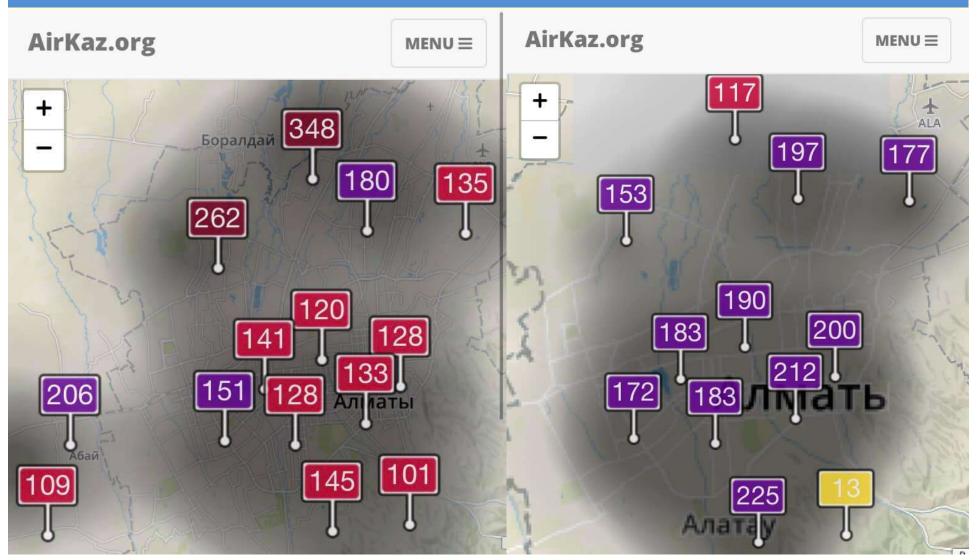
Кенесов Булат Нурланович

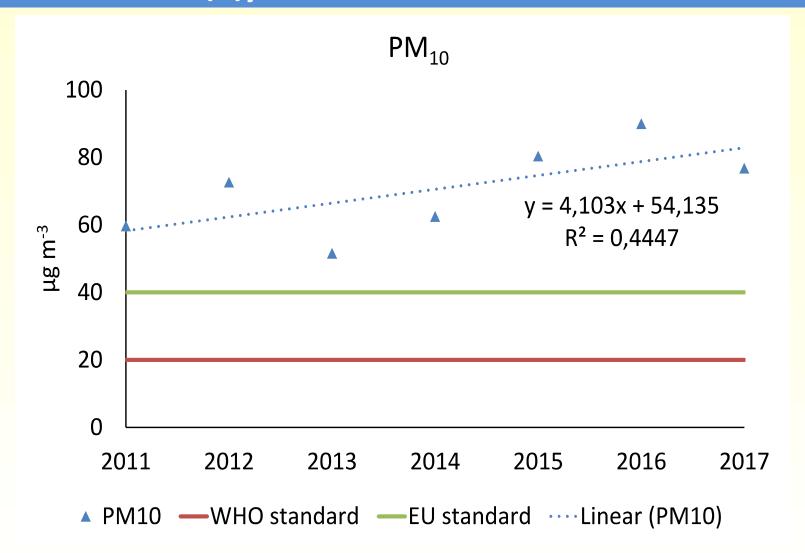
Кандидат химических наук, профессор
Директор Центра физико-химических методов исследования и анализа
КазНУ им. аль-Фараби


Загрязнение воздуха в Алматы


Фото: Павел Александров (https://www.facebook.com/profile.php?id=100014527214182)

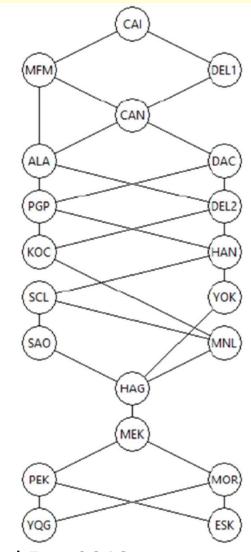
Географическое положение г. Алматы




Температурные инверсии воздуха

Загрязнение воздуха взвешенными частицами размером менее 2,5 мкм (РМ2.5)


Тенденции уровня загрязнения воздуха Алматы РМ10


Концентрации ПАУ в воздухе Алматы

	Время	Концентрация, нг/м ³								
Соединения	удержив	Зима 2014 г.			Весна 2014 г.			Лето 2014 г.		
	ания, мин	1	2	3	1	2	3	1	2	3
Нафталин	11,1	0,583	1,33	0,506	0,2305	0,383	н/о	0,239	0,271	0,1931
Ацетонафталин	17,8	2,34	3,89	0,649	н/о	н/о	н/о	0,0188	0,0220	0,0172
Ацетонафтен	18,7	0,141	0,225	0,0655	н/о	н/о	н/о	0,0115	0,0102	0,00800
Флуорен	21,0	1,45	0,0322	0,335	0,0935	0,0505	н/о	0,0507	0,0475	0,0351
Антрацен	25,2	21,03	26,02	3,01	0,558	0,565	н/о	0,103	0,0831	0,0601
Фенантрен	25,4	2,18	1,61	0,307	0,00681	0,0362	н/о	0,00823	0,00721	0,00571
Флуорантен	30,6	25,3	30,8	4,35	0,0545	0,580	н/о	0,0440	0,0256	0,0181
Пирен	31,5	19,8	21,6	3,86	н/о	0,440	н/о	0,0349	0,0265	0,0208
Бензо[а]антрацен	37,2	18,7	26,7	9,78	0,0114	0,288	н/о	0,0182	0,0136	0,0119
Хризен	37,7	6,33	14,2	3,28	0,0143	0,410	н/о	0,0219	0,0170	0,0119
Бензо[b]флуорантен	41,8	27,9	60,7	20,0	0,0431	0,517	0,0118	0,0140	0,0100	0,00841
Бензо[k]флуорантен	41,9	3,22	6,55	2,29	н/о	0,484	н/о	0,0104	0,0101	0,00722
Бензо[а]пирен	43,0	15,2	28,8	12,9	0,0244	1,60	н/о	0,0525	0,0566	0,0518
Бензо[ghi]перилен	47,0	0,531	1,065	0,299	0,147	1,39	0,221	0,00904	0,00650	0,0139
Индено[1,2,3-cd]пирен	47,8	1,67	3,58	1,80	0,134	0,975	0,215	0,00986	0,00680	0,0192
Дибензо[а,h]антрацен	47,2	0,149	0,0531	0,0255	н/о	0,151	н/о	0,0219	0,0288	0,0408
1 — Масанчи-Толе би; 2 — И	Іскандерова-А	Азербаева; 3 –	Саина-Райымбе	ека						

Летучие органические соединения в воздухе Алматы

Рейтинг городов мира по загрязнению их воздуха БТЭК

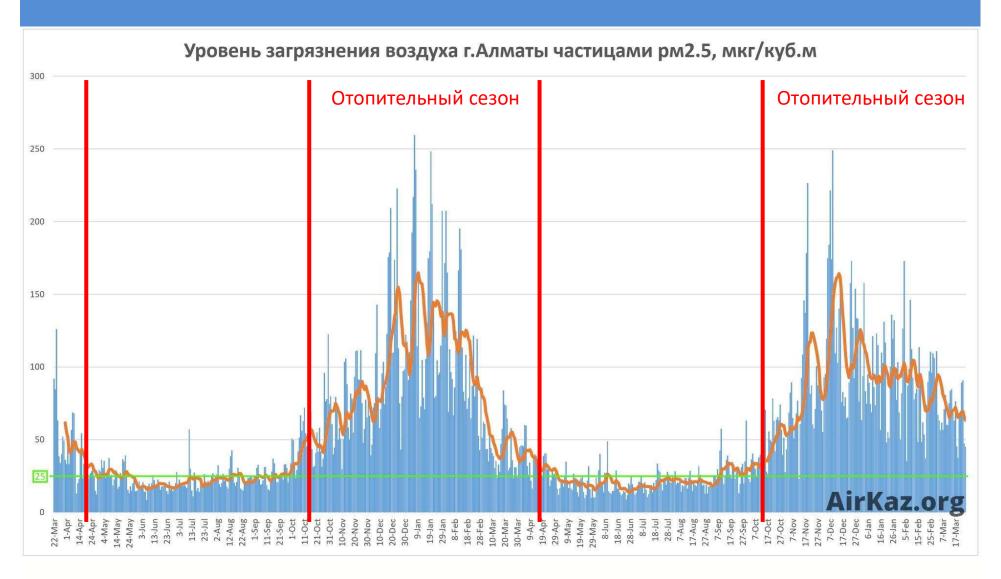
БТЭК — бензол, толуол, этилбензол и ксилолы

Carlsen et al., Sci Total Env, 2018

© Б.Н. Кенесов, 2021

Последствия

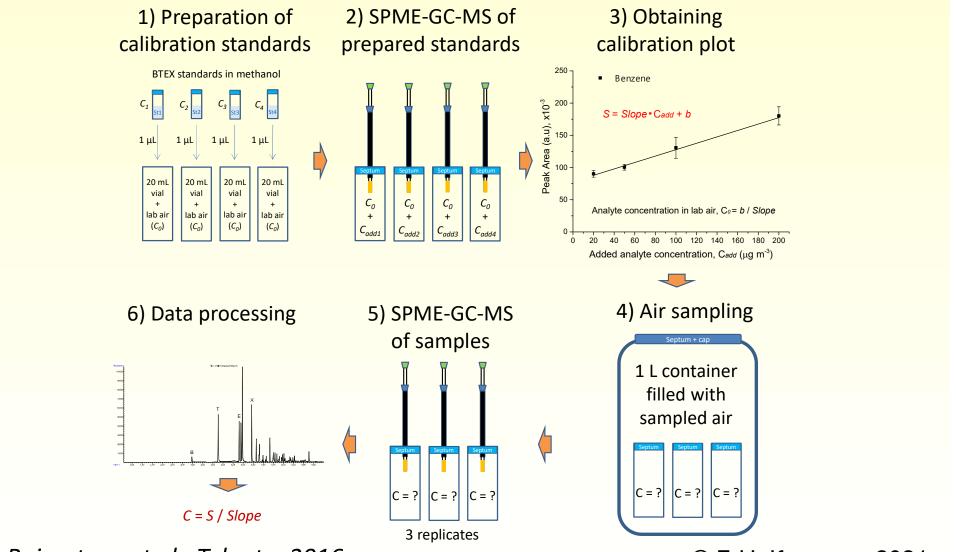
- Заболевания
 - Острые
 - Отложенные (рак, патологии, мутации и др.)
- Развитие детей
- Снижение трудоспособности и экономические потери


Расчет риска заболевания лейкозом от загрязнения воздуха бензолом

- Концентрация 17 мкг/м³ дает риск 10⁻⁴
- Средняя концентрация в Алматы 53 мкг/м³
- Риск составляет ~300 человек на 1 М
- В ЕС ПДК бензола (1 год) составляет 5 мкг/м³
- В Казахстане ПДК бензола (24 ч) составляет 100 мкг/м³

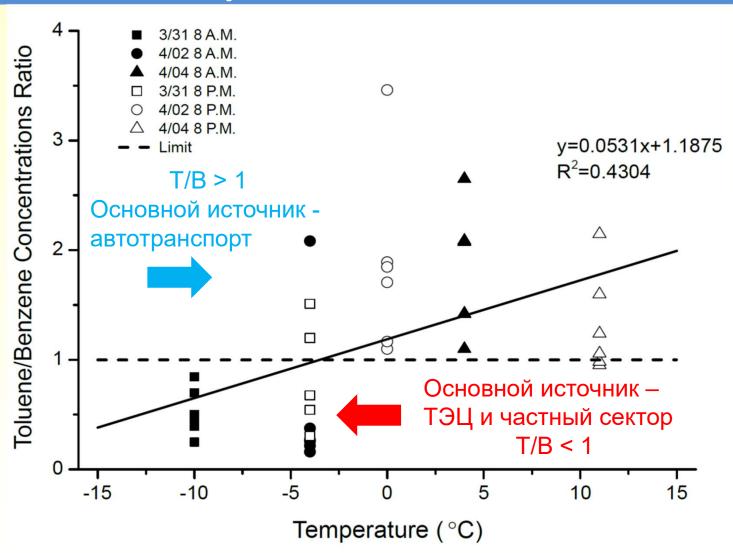
Источники загрязнения воздуха в Алматы

- Системы отопления и энергоснабжения
- Транспорт и заправочные станции
- Промышленные предприятия
- Строительные компании и свалки
- Природные (пожары и др.)


Годовая динамика РМ2.5

Концентрации ПАУ в воздухе Алматы

	Время	Концентрация, нг/м ³								
Соединения	удержив	Зима 2014 г.			Весна 2014 г.			Лето 2014 г.		
	ания, мин	1	2	3	1	2	3	1	2	3
Нафталин	11,1	0,583	1,33	0,506	0,2305	0,383	н/о	0,239	0,271	0,1931
Ацетонафталин	17,8	2,34	3,89	0,649	н/о	н/о	н/о	0,0188	0,0220	0,0172
Ацетонафтен	18,7	0,141	0,225	0,0655	н/о	н/о	н/о	0,0115	0,0102	0,00800
Флуорен	21,0	1,45	0,0322	0,335	0,0935	0,0505	н/о	0,0507	0,0475	0,0351
Антрацен	25,2	21,03	26,02	3,01	0,558	0,565	н/о	0,103	0,0831	0,0601
Фенантрен	25,4	2,18	1,61	0,307	0,00681	0,0362	н/о	0,00823	0,00721	0,00571
Флуорантен	30,6	25,3	30,8	4,35	0,0545	0,580	н/о	0,0440	0,0256	0,0181
Пирен	31,5	19,8	21,6	3,86	н/о	0,440	н/о	0,0349	0,0265	0,0208
Бензо[а]антрацен	37,2	18,7	26,7	9,78	0,0114	0,288	н/о	0,0182	0,0136	0,0119
Хризен	37,7	6,33	14,2	3,28	0,0143	0,410	н/о	0,0219	0,0170	0,0119
Бензо[b]флуорантен	41,8	27,9	60,7	20,0	0,0431	0,517	0,0118	0,0140	0,0100	0,00841
Бензо[k]флуорантен	41,9	3,22	6,55	2,29	н/о	0,484	н/о	0,0104	0,0101	0,00722
Бензо[а]пирен	43,0	15,2	28,8	12,9	0,0244	1,60	н/о	0,0525	0,0566	0,0518
Бензо[ghi]перилен	47,0	0,531	1,065	0,299	0,147	1,39	0,221	0,00904	0,00650	0,0139
Индено[1,2,3-cd]пирен	47,8	1,67	3,58	1,80	0,134	0,975	0,215	0,00986	0,00680	0,0192
Дибензо[a,h]антрацен	47,2	0,149	0,0531	0,0255	н/о	0,151	н/о	0,0219	0,0288	0,0408


Простая и точная методика определения ароматических углеводородов в воздухе

Baimatova et al., Talanta, 2016

© Б.Н. Кенесов, 2021

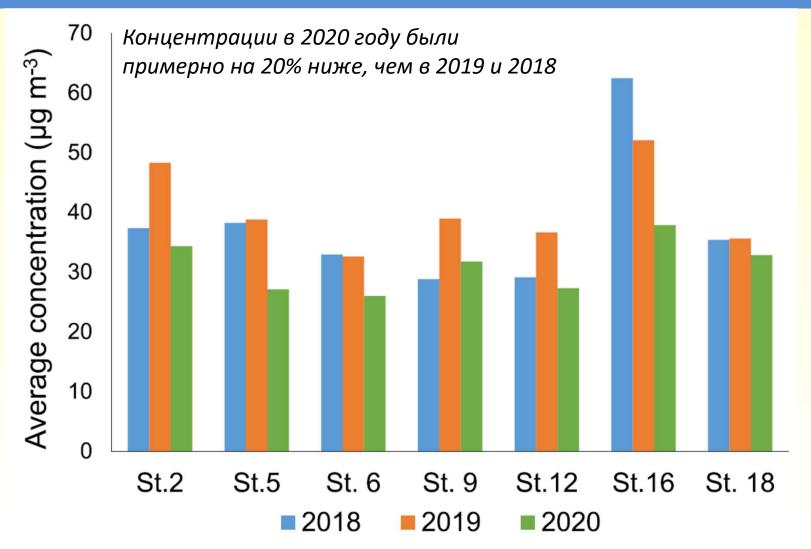
Соотношение концентраций толуола и бензола

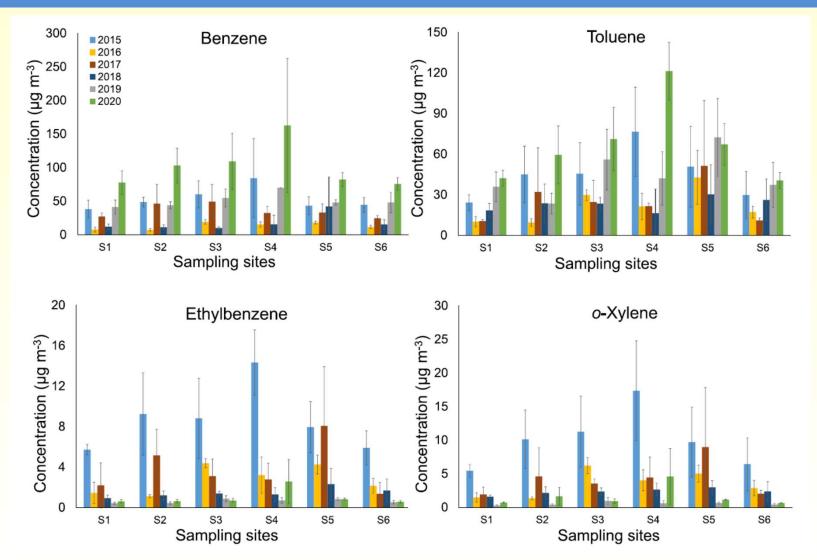
Споры об основном источнике загрязнения

Основные источники выбросов (официальные данные)

	ПДКсс (мг/м³)	Объемы выбросов (тонн)					
Загрязнитель		Транс-	Стац.	Жилой	Итого		
		порт	источники	фонд	VIIOIO		
Оксид углерода (СО)	3	72215	4100	443	76758		
Диоксид азота (NO_2)	0,04	6761	9700	65	16526		
Диоксид серы (SO_2)	0,05	508	17400	639	18547		
Твердые частицы	0,15	143	6100	2812	9055		
Итого		79627	37300	3959	120886		

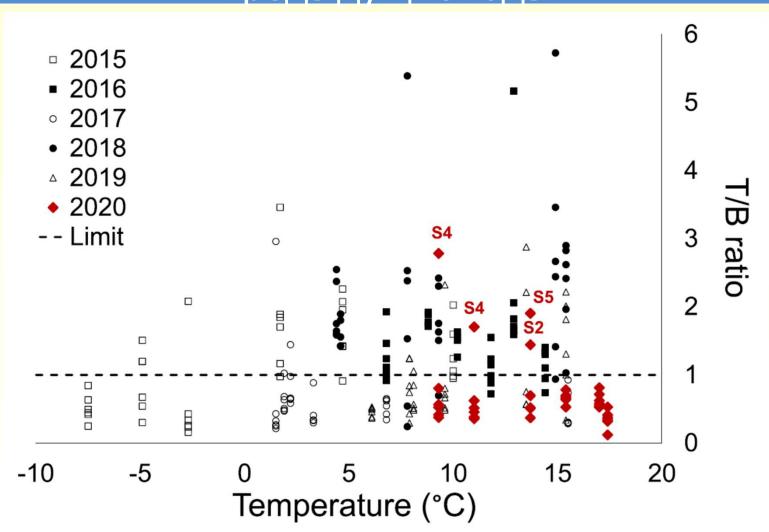
Источник данных – отчет «Экосервис-С», 2017


Вклад различных источников загрязнения в выбросы приоритетных загрязнителей воздуха в г.Алматы


Вклад основных источников загрязнения (выбросы/ПДКсс)

	Вклад (%)					
Загрязнитель	Транспорт	Стац. источники	Жилой фонд			
Оксид углерода (СО)	2,67	0,15	0,02			
Диоксид азота (NO_2)	18,75	26,89	0,18			
Диоксид серы (SO ₂)	1,13	38,60	1,42			
Твердые частицы	0,32	6,77	3,12			
Итого	22,67	72,41	4,73			

Концентрации РМ2.5 во время карантина (2020) и в предыдущие годы


Концентрации ароматических углеводородов во время карантина и в предыдущие годы

Kerimray et al., Sci Total Env, 2020

© Б.Н. Кенесов, 2021

Источники загрязнения воздуха ароматическими углеводородами во время карантина и в предыдущие годы

Планируемые исследования

- Разработка эффективной системы мониторинга атмосферного воздуха в крупных городах
- Ежедневный мониторинг ЛОС и ПАУ в воздухе Алматы для установления характера проблемы и ее тенденций
- Выявление вклада каждого источника в загрязнение воздуха взвешенными частицами, ЛОС и ПАУ

Предложения по улучшению качества воздуха

- 1) Перевести частный сектор на газ (+пригороды)
- 2) Перевести ТЭЦ-2 и ТЭЦ-3 на газ
- 3) Усилить контроль за выбросами автотранспорта
- 4) Развивать метро и ЛРТ
- 5) Работать над повышением энергоэффективности

Другие предложения

- Развивать научные исследования в области экологии
- Использовать результаты для принятия решений
- Привлекать ученых-экологов к принятию решений
- Открыть все официальные экологические данные
- Расширить охват контролируемых загрязнителей

Благодарности

Министерство образования и науки РК

Проекты:

- Разработка методик анализа, материалов и оборудования для экономически-эффективного "зеленого" экологического мониторинга (2018-2020)
- Разработка полуавтоматической станции мониторинга концентраций органических загрязнителей в атмосферном воздухе городов хроматографическими методами (2015-2017)
- Разработка методических основ контроля органических экотоксикантов в Республике Казахстан с применением методов зеленой аналитической химии (2012-2014)

