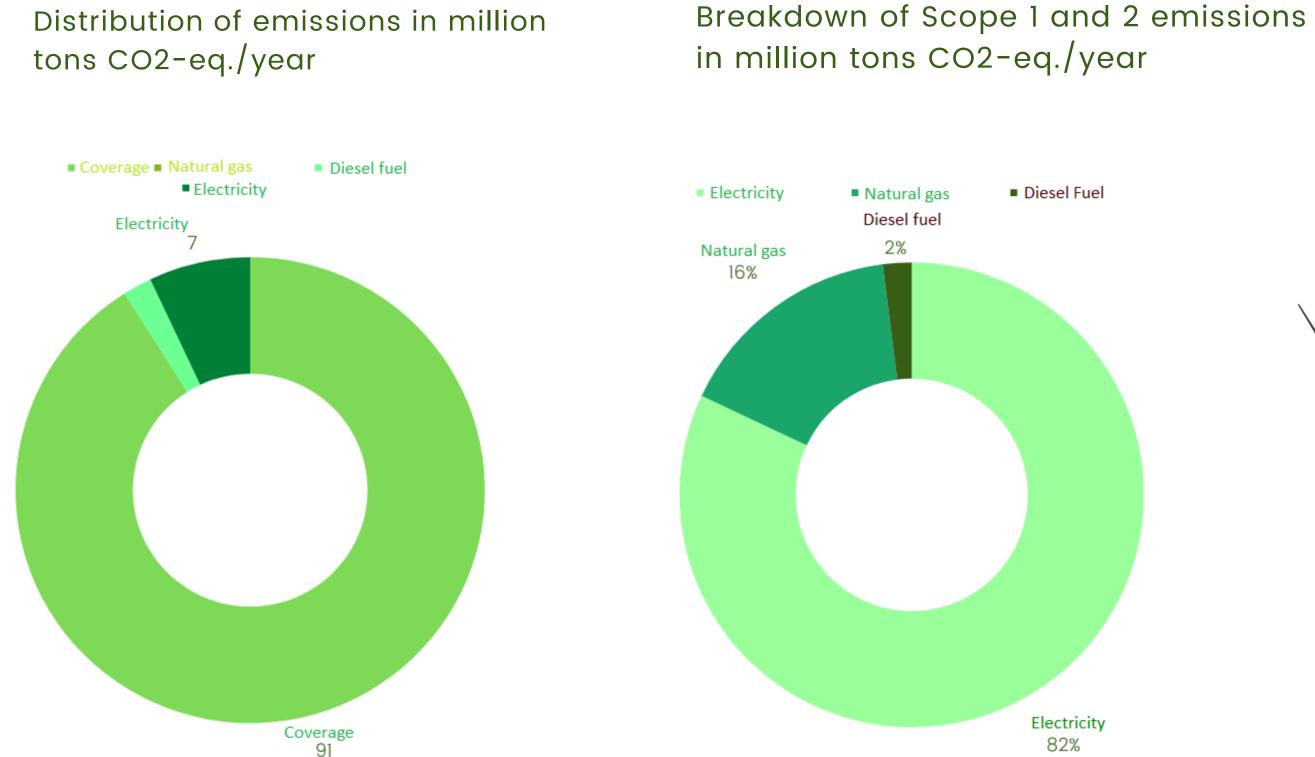


DECARBONIZATION OF THE MINING SECTOR

MODULE 1

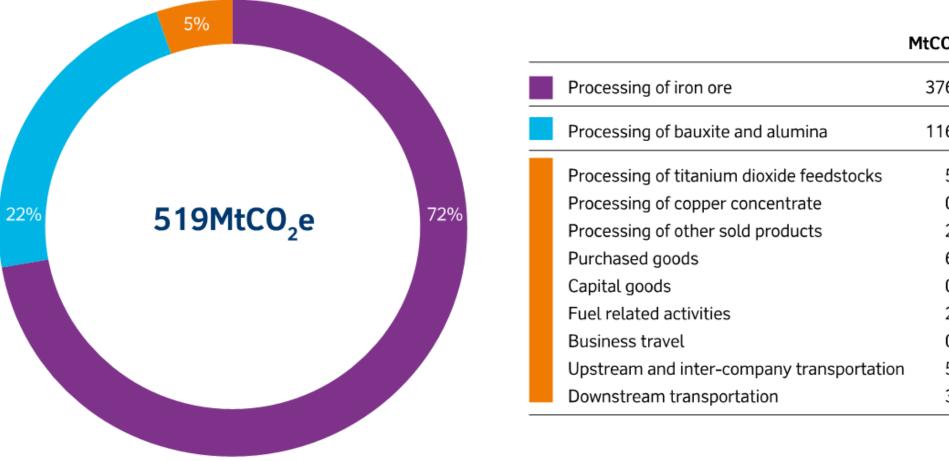
Material for group work



GOALS OF SECTORAL GROUP WORK

- Identify major sources of greenhouse gas emissions in your sector
- Familiarize yourself with target indicators and quantitative metrics for decarbonization in the industry
- Learn about the climate risks that companies in this sector consider the most significant
- Assess the activities and technological solutions that are most common and acceptable in the short and long term to decarbonize the sector

SOURCES OF EMISSIONS IN MINING


IGTI

Diesel Fuel

Electricity 82%

SOURCES OF EMISSIONS IN SCOPE 3: RIO TINTO

Distribution of emissions in million tons CO2-eq./year

0 ₂ e	
76.4	
16.4	
5.8 0.5	

- 2.5 6.6
- 0.1
- 2.8
- 0.1
- 5.1
- 3.0

WHICH PROCESSES LEAD TO SCOPE 1 AND 2 GHG EMISSIONS AT YOUR ENTERPRISE?

Use of electricity:_____

Use of diesel fuel: _____

Use of natural gas:_____

Other sources:

CORPORATE EMISSION REDUCTION TARGETS

Company	Target year: 2030		
	Scope 1 & 2	Scope 3	
Vale S.A. (Brazil)	33% (vs 2017) or 2.54% per year	15% by 2035 (vs 2018) or 1.25% per year	
BHP Group (Australia)	30% (vs 2020) or 3.0% per year	30-40% (vs 2020) or 3-4% per year	
Polymetal (Russia)	35% (vs 2019) or 3.2% per year	No target	
KazMinerals (Kazakhstan)	5% by 2024 (vs 2018) or 1% per year	No target	

DOES YOUR ENTERPRISE HAVE DECARBONIZATION RELATED TARGETS?

Scope 1 and	2:	

Scope 3 : _____

Other targets:

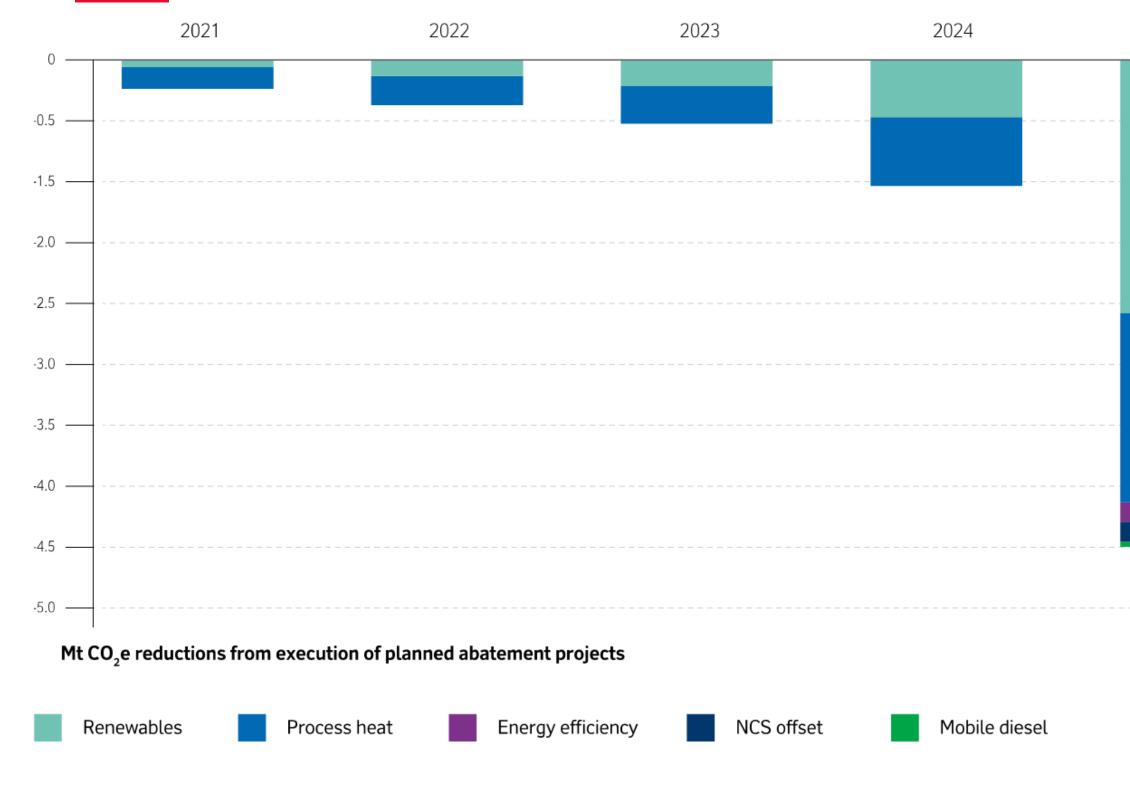
•Energy efficiency improvement _____

•Other targets:_____

FORTESCUE METAL: DECARBONIZATION STRATEGY

Australian 'Infinity Train' uses gravity to recharge batteries

Fortescue is developing the world's first Infinity Train with zero emissions. The regenerative battery electric train will use gravitational energy to fully recharge its battery electric systems without any additional charging requirements on the return trip.


The Infinity Train will not only accelerate Fortescue's quest to become carbon neutral by 2030, but also reduce operating costs, improve maintenance efficiency, and increase productivity potential.

This technology will help reduce emissions in the hard-to-abate heavy industry sector, with significant potential for global commercialization

Research and development costs for the Infinity Train are expected to be \$50 million over the next two years

82 MILLION LITERS OF DIESEL FUEL IN 2021 2214 MILLION TONS CO2 EQ.

RIO TINTO: DECARBONIZATION STRATEGY

2025 - 2030

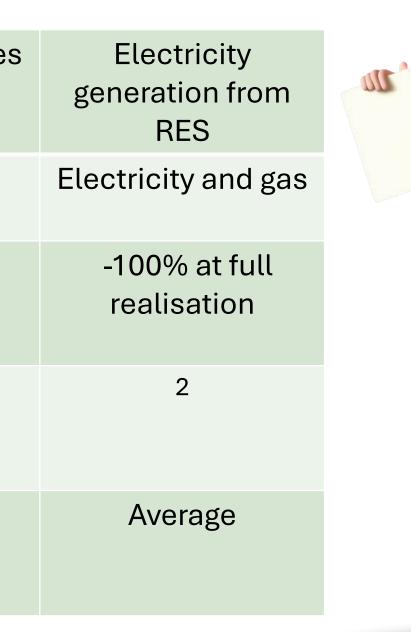
By 2030, the company plans to reduce Scope 1 and 2 emissions by 15% (45 million tons CO2) through

- Use of renewable energy resources
- Electrification of heat production processes
- Improving energy • efficiency

KAZ MINERALS: DECARBONIZATION IGTIC STRATEGY

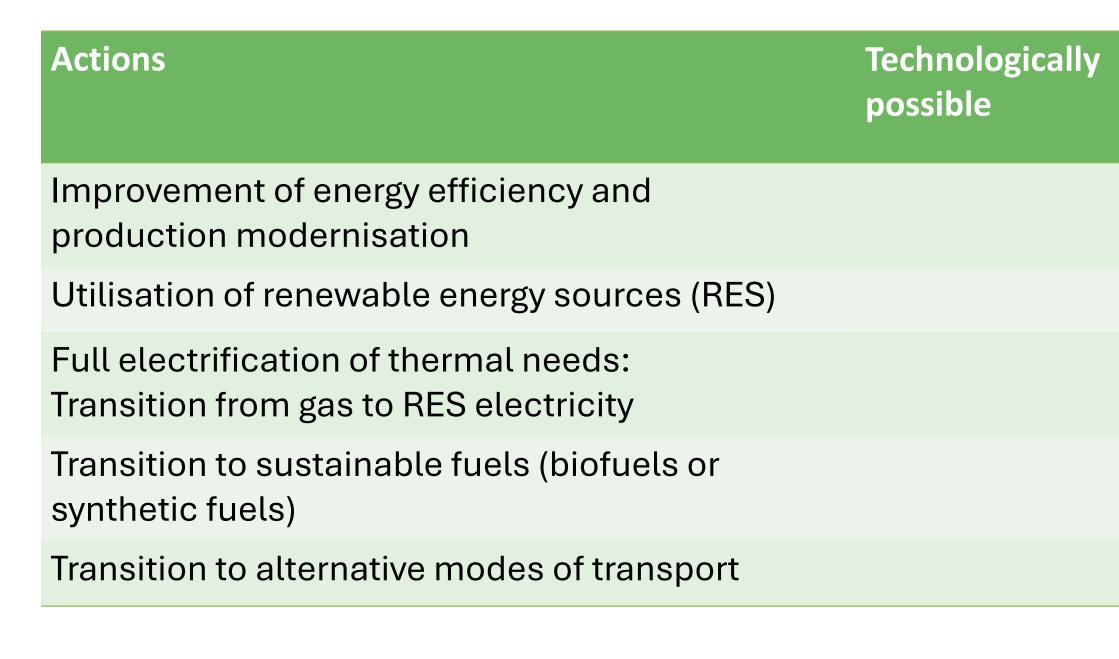
- The company continuously strives to implement advanced technologies in its mining and processing operations to optimize operational performance and minimize resource usage.
- In 2021, the company expanded the use of artificial intelligence in mining and processing operations to improve production efficiency and reduce energy consumption per ton of produced copper.
- KAZ Minerals implemented the TRIT-AI system at the ٠ Aktogay sulphide ore processing plant, which is now being deployed at Bozshakol and the second sulphide ore processing plant in Aktogay. The tool uses advanced analytics to optimize ore beneficiation processes.

- emissions.


•The result of using the tool is the optimization of throughput and recovery rates at processing plants. Pilot implementation at Aktogay demonstrated an increase in copper recovery and ore processed.

•This allows the company to operate more efficiently and reduces energy consumption per ton of produced copper. The effect of the implementation amounted to 37 thousand tons of CO2 or 2% of the company's total

COMPARISON OF ACTIONS


Summary of the action	Efficiency improvement	Sustainable fuel	Alternative modes of transport
Emission sources	Electricity, gas, diesel	Diesel	Diesel
Emission reduction potential in %	from -5 to -20%	from -40 to -70%	-100% at full realisation
Technological readiness (from 1 to 3)	3	3	2
Investments	Low	Average	High

EVALUATE THE TECHNICAL AND ECONOMIC FEASIBILITY OF IMPLEMENTING DECARBONIZATION ACTIONS AT YOUR ORGANIZATION

Economically justified

WHAT ACTIONS HAVE ALREADY BEEN IMPLEMENTED AT YOUR COMPANY?

- Utilization of renewable energy sources:_____
- Energy efficiency improvement:_____
- Utilization of alternative fuels and/or modes of
- transportation:_____
- Other actions:_____

ASSESSMENT OF CLIMATE RISKS

- Credit Risk Associated with ESG (Environmental, Social, and Governance): Risk of facing higher interest rates and difficulties in accessing financing due to strict ESG compliance requirements.
- Regulatory Risk: Risk of potential changes in national climate-related legislation, including greenhouse gas taxation, carbon footprint reduction targets, and potential litigation for non-compliance with regulatory requirements.
- Market risk: Risk exposure to carbon taxation in importing countries of production.
- Customer Risk: Risk of losing customers due to failure to meet their decarbonization targets as a supplier.

ASSESSMENT OF CLIMATE RISKS

Risks related to the negative impact of climate change on operations:

 Operational risk for the mining industry and tailings storage facilities due to changes in precipitation

- Operational risk due to extreme temperatures
- Operational risk due to extreme weather conditions in the mining industry and at tailings storage facilities
- Operational risk due to water scarcity

ASSESS THE **IMPACT** THAT THE RISK MAY HAVE ON YOUR ENTERPRISE AND THE **PROBABILITY** THAT THE RISK WILL MATERIALISE

RATE FROM 1 LOW)**TO 5 HIGH**)

Risk	Impact	Probability
Credit risk: Access to capital		
Regulatory risk: Stricter legislation		
Market risk: Taxation of imports		
Customer risk: Loss of markets		
Operational Risk: Changes in precipitation levels		
Operational Risk: Extreme temperatures		
Operational Risk: Extreme weather conditions		
Operational risk: Water scarcity		

RESULTS OF GROUP WORK

- What are the main sources of GHG emissions in your industry?
- What goals do your companies set for themselves?
- Which decarbonization measures do you consider most realistic?
- Which measures have already been implemented?
- What are the main climate risks for your company?

DECARBONIZATION OF THE MINING SECTOR ? Module 1 – Additional information

SECTORAL DECARBONIZATION: MINING INDUSTRY

More ambitious goals for reducing Scope 1 and 2 emissions.

Focus: renewable electricity and energy production (reducing emissions by 30-35%), replacing diesel-powered mining equipment (by 40 to 50%).

Targeting mines with the highest emissions and eliminating emissions from multiple sources.

SECTORAL DECARBONIZATION: MINING INDUSTRY

•The path highly depends on the type of operation.

Several decarbonization options:

- Scope 1 and 2: Improving operational efficiency, sustainable fuels, alternative transmissions.

- Scope 2: Green electricity, renewable energy sources.
- Scope 3: Sustainable sourcing of raw materials and engagement with customers.

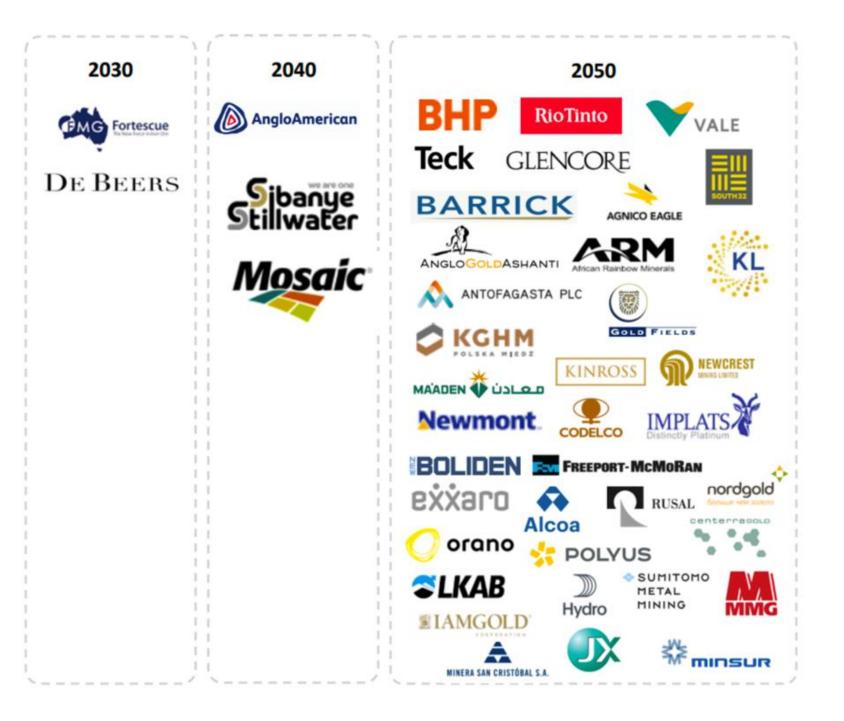
Decarbonization strategies and progress in Mining

Integrated Report 2022

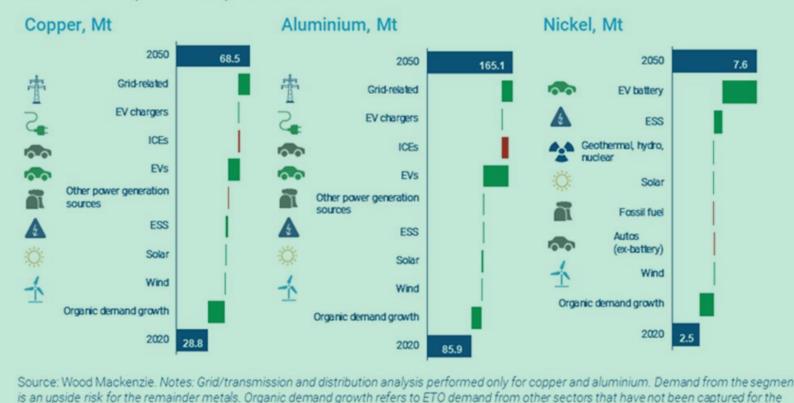
SUMITOMO METAL MINING

Published: March 2022

IGTIC



SECTORAL DECARBONIZATION: MINING INDUSTRY


IGTIC

- The mining industry accounts for approximately 2 to 3% of global greenhouse gas emissions.
- There is an increasing number of companies setting decarbonization targets for Scope 1 and 2 emissions.

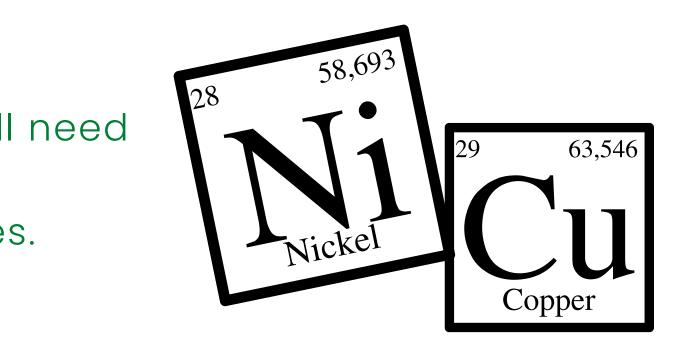
COMPANIES WITH ZERO DECARBONISATION TARGETS AND TARGET YEAR. SOURCE: GLOBAL DATA.

Gains to base metals consumption under an accelerated energy transition (AET-1.5) scenario

purpose of this end-use analysis

90%:

To meet future demand for key minerals, the supply will need to increase:


- Copper: from 25.8 million tonnes to 68.5 million tonnes.
- Nickel: from 2.5 million tonnes to 7.5 million tonnes.

THE MAIN CHALLENGE FOR THE SECTOR

Copper and nickel mining value chains will need to reduce absolute emissions by around

-Copper: from 85 million tonnes CO2eq/year to 8.5 million tonnes CO2eq/year -Nickel: from 88 million tonnes CO2eq/year to 8.8 million tonnes CO2eq/year

DECARBONIZATION OF THE MINING SECTOR ? Module 1 – Additional information

RIO TINTO: PROGRESS AND BEST PRACTICES

PROGRESS

Emissions	Total Scope 1 and 2 emissions were 7% h tonnes of CO2-equivalent due to operation
Electrification	In partnership with Williams Advanced En ton electric quarry truck + rapid charging include replacing diesel engines in heavy powered by hydrogen fuel cells. Also, tes powered by hydrogen.
Renewable recourses	Over \$700 million USD has been invested MW of photovoltaic solar panels and larg

emissions were 7% higher in the 2021 fiscal year at 2.22 million ional expansion.

> Engineering: a battery system to power a 240g unit, utilizing renewable energy. Testings / mining equipment with electric motors sting an environmentally friendly drilling rig

d in renewable energy initiatives, including 150 ge-scale battery storage

GOALS

SOLUTIONS

SUMITOMO METAL MINING: SUSTAINABLE DEVELOPMENT STRATEGY PROGRESS

Emission reduction targets	Reduce greenhouse gas en compared to the 2013 fisca Expand contributions to gr reduction through product society.
Net zero target year	Carbon neutral by 2050.

Renewable energy	Reduction in emis
Reduction in diesel fuel usage	Not mentioned. O avoided greenhou creation of batter
Alternative	Developing techn unused resources commercializing
Consumption	1 billion yen (\$7 r development. 0.0 in R&D.

- missions by at least 26%
- cal year.
- reenhouse gas emissions
- cts contributing to a low-carbon

nissions with solar energy

- Commitment to increase ouse gas emissions through the ery materials.
- nnologies to create value from es of non-ferrous metals, g recycling technologies.
- ' million) spent on research and .02% of revenues is reinvested

SUMITOMO METAL MINING: PROGRESS AND BEST PRACTICES

PROGRESS

Emissions	Efforts to maintain greenhouse gas emission level (as of 2021) + reducing emission intens an internal carbon pricing system.
Renewable sources	Reduction of greenhouse gas emissions thro sources generated at the SMM solar power so Prefecture (approximately 1.6 thousand tons 2021 fiscal year).

Best Practices:

- Research and development for sustainable and efficient smelting technologies, mineral extraction, and efficiency enhancement.

- Low-carbon footprint in mining operations through efficient technology utilization.
- Implementation of an internal carbon pricing system.

ns below the 2013 fiscal year sity by 5%. Implementation of

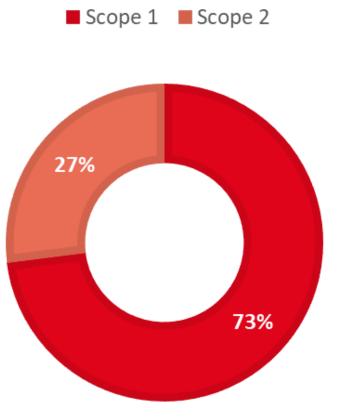
ough solar energy and other station in Kasama, Ibaraki s of CO2-equivalent in the

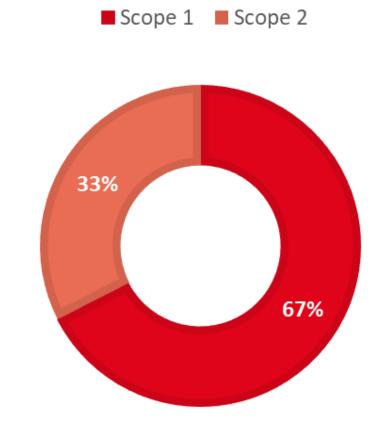
FORTESCUE METAL: PROGRESS AND BEST PRACTICES

PROGRESS

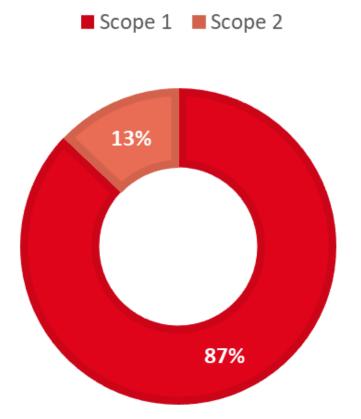
Total Scope 1 and 2 emissions were 7% higher in million tonnes of CO2-equivalent due to operation
In partnership with Williams Advanced Engineer power a 240-ton electric quarry truck + rapid ch renewable energy. Testings include replacing die equipment with electric motors powered by hyd an environmentally friendly drilling rig powered
Over \$700 million USD has been invested in rene
including 150 MW of photovoltaic solar panels a storage

n the 2021 fiscal year at 2.22 ional expansion.


ering: a battery system to harging unit, utilizing esel engines in heavy mining drogen fuel cells. Also, testing d by hydrogen.


newable energy initiatives, and large-scale battery

"COMPARISON OF COMPANIES


Breakdown of emissions for categories 1 and 2 (in million tons of CO2-equivalent)

Rio Tinto (2021): Scope 1: 22.7 mil. tons CO2-eq Scope 2: 8.4 mil. tons CO2-eq Total: 31.1 million tons CO2-eq

Sumitomo (2021): Scope 1: 1.786 mil. tons CO2-eq Scope 2: 0.861 mil. tons CO2-eq Total: 2.647 mil. tons CO2-eq

Fortescue (2022) Scope 1: 2,22 min. tonsCO2-eq Scope 2: 0,33 min. tons CO2-eq Total: 2,55 min. tons CO2-eq.

IGTIC

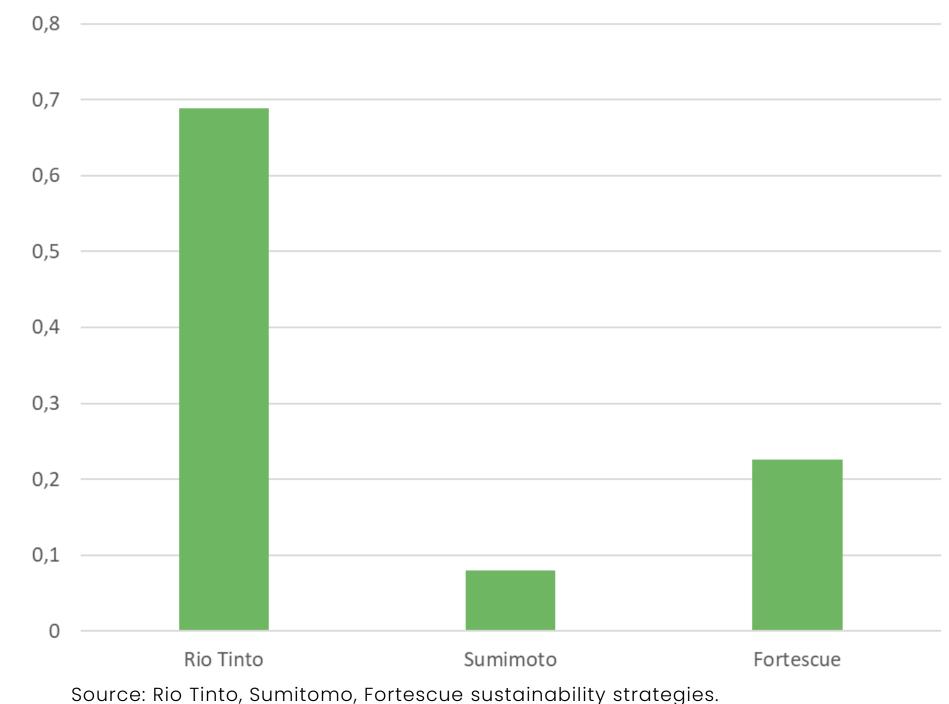
"COMPARISON OF COMPANIES

Carbon intensity (tonnes of CO2 equivalent per tonne of copper equivalent), fiscal year 2020:

- Rio Tinto: 84.20
- Sumitomo: 3.85
- Fortescue: 127.73

Average for diversified mining sector: 54.47

Compare also by revenue (Scope 1 and 2 area/million dollars).


Carbon intensity depends on various factors, including the country of production and its energy balance, the operations in which the company engages, and the utilization of local energy/electricity...

COMPARISON OF COMPANIES BASED ON REVENUE

Carbon intensity based on revenue (tonnes of CO2 equivalent per billion US dollars), fiscal year 2022:

- Rio Tinto: 0.69 (revenue \$45.2) billion)
- Sumitomo: 0.08 (revenue \$33 billion)
- Fortescue: 0.23 (revenue \$11.3 billion)

ROADMAP

"DECARBONIZATION GUIDE"

Institute of Mineral Resources Research, Western Australia: Report on Decarbonization Pathways for the Australian Mining Sector.

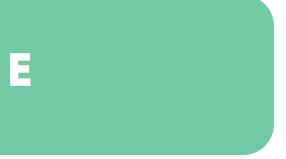
Determine: Identify the emission profile of the mine and critical sectors.

Target: Establish short-term and longterm objectives.

Plan: Determine the best approach and prioritize actions.

Implementation: Engage with stakeholders and ensure strictness and transparency.

Monitoring: use of generally accepted disclosure schemes (TCFD)



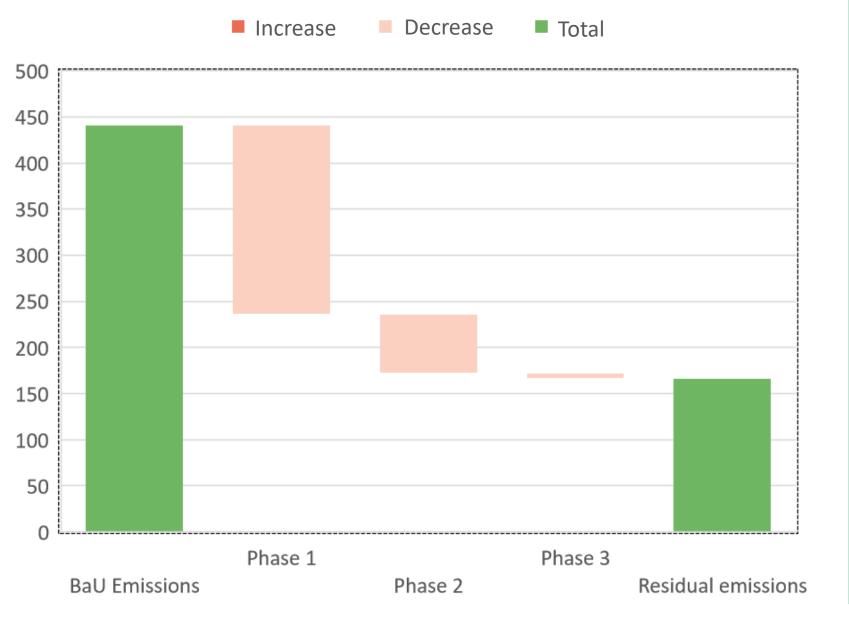
EXAMPLE: ZERO MINE

• An ideal case: copper production from mine to metal, located in remote Western Australia with a remaining mine life of 25 years.

- processes.

• Fossil fuels (natural gas and diesel fuel) dominate the energy value chain.

• Total annual emissions in Year 1: 441 thousand tonnes of CO2 equivalent.


• 70% Electricity generation from natural gas. • 14% Diesel fuel combustion.

• 10% Natural gas consumption for thermal

• 4 decarbonization pathways with 3 stages: short-term, medium-term, and long-term.

MINE ZERO PATHWAY 1: ESTABLISHED TECHNOLOGY

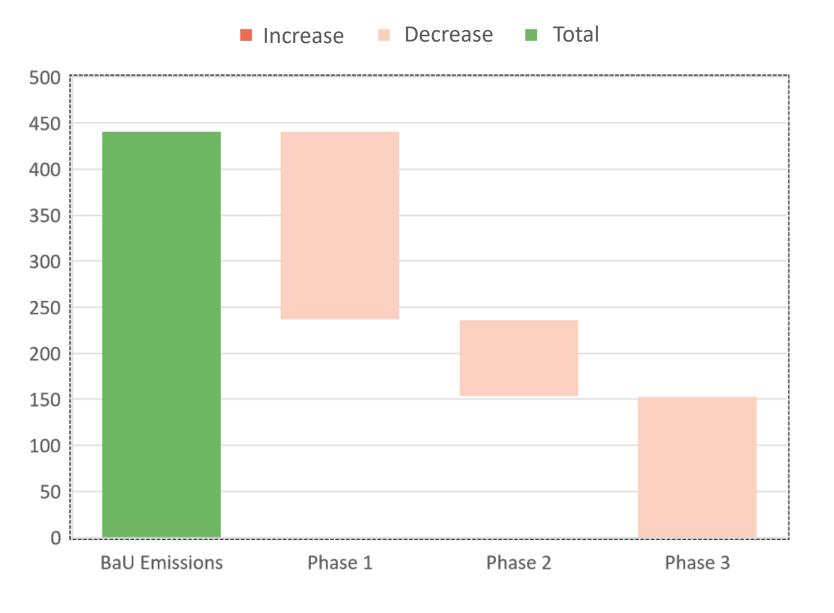
Reduction in emissions on an annual basis for each phase of Pathway 1 (thousand tons of CO2-equivalent).

An ideal case: coppe located in remote We mine life of 25 years. •Prioritization of elect sources onsite. •Electrification of the natural gas. •Diesel remains in the emissions. •Approximate percent reduce using current

τοται σαρπ

An ideal case: copper production from mine to metal, located in remote Western Australia with a remaining mine life of 25 years.

•Prioritization of electricity production from renewable sources onsite.

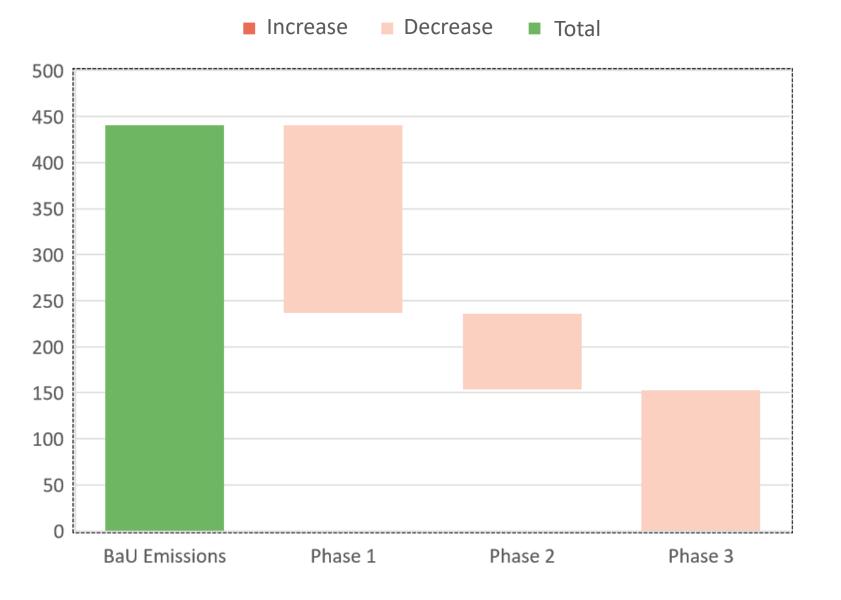

•Electrification of thermal processes and use of

•Diesel remains in the mix, offsetting remaining

•Approximate percentage of emissions they can reduce using currently available technologies. Total capital expenditure (CAPEX): \$744 million

MINE ZERO PATHWAY 2: ELECTRIFICATION

Reduction in emissions on an annual basis for each phase of Pathway 1 (thousand tons of CO2-equivalent).


generation) battery power

- •Phase 1: Common for all pathways (focused on RE
- •Phase 2: Complete electrification of heat needs +
- •Phase 3: Phased elimination of diesel fuel with the import of e-fuel to also replace the remaining natural gas in electrification. Additional renewable energy capacity to meet electricity needs.
- Total capital investment: \$1.072 billion.

MINE ZERO PATHWAY 4: HYDROGEN PRODUCER

Reduction in emissions on an annual basis for each phase of Pathway 1 (thousand tons of CO2-equivalent).

electricity generation) additional batteries

Total capital investment: \$3,011 billion.

Source: cefc and mriwa

- •Phase 1 Common for all pathways.
- •Phase 2: Increase in renewable energy capacity +
- implementation of batteries (diesel fuel still used for
- transport and natural gas for the remaining
- •Phase 3: Phased elimination of diesel fuel,
- replacement with on-site hydrogen production +

CONCLUSION

- There are various decarbonization pathways for the mining industry with different costs and effects.
- Costs and actions depend on the current situation, mine characteristics, type of ore extracted, and location.
- Focus on electrification, decarbonizing energy production, and phasing out diesel fuel.
- Many options are already available to start the decarbonization journey: energy efficiency and renewable energy.
- Focus on research and development.
- Split Scope 1 and 2 emissions by operations and sources.
- Disclose Scope 3 emissions, partner with processing companies to reduce them.
- Adoption of an internal carbon pricing system.

